還不快點登入,你們這些看小說都不登入就離開的。
登入可以幫助你收藏跟紀錄愛書,大叔的心血要多來支持。
不然管理員會難過。
《走進不科學》第259章 見證奇跡吧!(中)
  第259章 見證奇跡吧!(中)

  從公元前活到現在的同學應該都知道。

  很早以前,人們就發現了電荷之間和磁體之間都有作用力。

  但是最初,人們並未把這兩種作用聯系起來。

  直到人們發現有些被閃電劈中的石頭會具有磁性,於是猜測出電與磁之間可能存在某種關系。

  再往後的故事就很簡單了。

  奧斯特發現電可以產生磁,法拉第發現了磁可以產生電。

  人們終於認識到電與磁的關系密不可分,開始利用磁鐵製造發電機,也利用電流製造電磁鐵。

  不過此前提及過。

  法拉第雖然發現了電磁感應現象,並且用磁鐵屑表示出了磁感線。

  但最終歸納出電磁感應定律的,則是今天同樣出現在教室裡的紐曼和韋伯。

  只是他們為了紀念法拉第的貢獻,所以才將這個公式命名為法拉第電磁感應定律。

  紐曼和韋伯的推導過程涉及到了的紐曼矢量勢An和韋伯矢量式Aw,比較複雜,這裡就不詳細深入解釋了。

  總而言之。

  法拉第電磁感應定律的終式如下:

  1.E=nΔΦ/t
  (1)磁通量的變化是由面積變化引起時,ΔΦ=BΔS,則E=nBΔS/t;

  (2)磁通量的變化是由磁場變化引起時,ΔΦ=ΔBS,則E=nΔBS/t;

  (3)磁通量的變化是由於面積和磁場變化共同引起的,則根據定義求,ΔΦ=Φ末-Φ初,

  2.導體棒切割磁感線時:E=BLv
  3.導體棒繞一端轉動切割磁感線時:E=BL2ω
  4.導線框繞與B垂直的軸轉動時:E=NBSω。

  看到這些公式,是不是回憶起了被高中物理支配的恐懼?

  咳咳
  而徐雲正是在這個基礎上,寫下了另一個令法拉第頭皮發麻的公式:

  ▽×(▽×E)=▽(▽·E)-(▽·▽)E=▽(▽·E)-▽E
  ▽T=T/X+T/y+T/z。

  沒錯。

  聰明的同學想必已經看出來了。

  第一個小公式是矢量的三重積公式推電場E的旋度的旋度,第二個則是電場的拉普拉斯。

  其中旋度這個名稱也就是curl,是由小麥在1871年提出的詞匯。

  但相關概念早在1839在光學場理論的構建就出現過了,只是還沒正式被總結而已。

  其實吧。

  以法拉第的數學積累,這個公式他多半是沒法瞬間理解的,需要更為深入的解析計算。

  奈何考慮到一些鮮為人同學掛科掛的都快哭了,這裡就假定法拉第被高斯附身了吧
  隨後看著徐雲寫出來的這個公式,在場眾人中真實數學水平最高的韋伯再次意識到了什麽。

  只見他皺著眉頭注視了這個公式小半分鍾,忽然眼前一亮。

  左手攤平,右手握拳,在掌心上重重一敲:
  “這是.電場散度的梯度減去電場的拉普拉斯可以得到的值?”

  徐雲朝他豎起了一根大拇指,難怪後世有人說韋伯如果不進入電磁學,或許數學史上便會出現一尊巨匠。

  這種思維靈敏度,哪怕在後世都不多見。

  在上面那個公式中。

  ▽(▽·E)表示電場E的散度的梯度,E(▽·▽)則可以換成(▽·▽)E,同時還可以寫成▽E——這就引出了後面的拉普拉斯算子。

  只要假設空間上一點(x,y,z)的溫度由T(x,y,z)來表示,那麽這個溫度函數T(x,y,z)就是一個標量函數,便可以對它取梯度▽T 。

  又因為梯度是一個矢量——梯度有方向,指向變化最快的那個方向,所以可以再對它取散度▽·。

  只要利用▽算子的展開式和矢量坐標乘法的規則,就可以把溫度函數T(x,y,z)的梯度的散度(也就是▽T)表示出來了。

  非常的簡單,也非常好理解。

  好了,純數學推導就先到此結束。(縮減的比較多,如果有哪個環節不好理解的可以留言,我盡量解答)

  隨後徐雲又看向了小麥,說道:
  “麥克斯韋同學,再交給你一個任務,用拉普拉斯算子去表示我們之前得到的波動方程。”

  小麥此時的心緒早就被徐雲所寫的公式吸引了,聞言幾乎是下意識的便拿起筆,飛快的演算了起來。

  不過不知為何。

  在他的心中,總覺得這個公式莫名的有些親切
  甚至他還產生了一股非常微妙的、說不清道不明的感覺:

  在看到徐雲列出這個公式的時候。

  他仿佛看到了自己的女朋友正牽著別人的手,在自己面前肆意擁吻
  哦,自己沒女朋友啊,那沒事了。

  而另一邊。

  徐雲如果能知道小麥想法的話,臉色多半會也會有些怪異。

  因為某種意義上來說.
  自己這確實是牛頭人行為來著:

  他所列出的公式不是別的,正是麥克斯韋方程組在拉普拉斯算子下的表達式之一
  可惜小麥不會問,徐雲也不會說,這件事恐怕將會成為一個無人知曉的謎團了。

  隨後小麥深吸一口氣,將心思全部放到了公式化簡上。

  上輩子徐雲在寫小說的時候,曾經有讀者提出過一個還算挺有質量的疑問。

  1746年的時候一維波動方程就出現了,為什麽還要重新推導公式呢?

  答案很簡單:
  雖然達朗貝爾曾經研究出過一維的波動方程,但他研究出的是行波初解。

  這種解也叫作一般解,和後世的波動方程區別其實非常非常的大。

  徐雲這次所列的是1865年的通解,所以並不存在什麽“這個世界線裡還沒推導出波動方程”的bug。

  別的不說。

  光是經典波動方程中需要用的傅裡葉變化思路,都要到1822年才會由傅裡葉歸納在《熱的解析理論》中發表呢。

  視線再回歸現實。

  此時此刻。

  小麥像是個熱忱的純愛戰士一般,哼哧哼哧的在紙上做著計算:

  “兩邊都取旋度.”

  “▽·E=0”

  唰唰唰——

  隨著筆尖的躍動。

  一項項化簡後的數據出現在紙上。

  而隨著這些表達式的出現,現場諸多大佬的呼吸,也漸漸的變得粗重了起來。

  除了威廉·惠威爾和阿爾伯特親王之外,唯獨小麥這個解題人還沒意識到問題的嚴重性。

  畢竟目前他還只是個數學系的學生,尚未正式接觸電磁學,沒有足夠的物理敏感度。

  他只是在數學層面對公式進行化簡計算,同時也沒有足夠的腦力去思考‘意義’這個問題。

  不過隨著計算來到最後階段,在即將寫下答案之際,再遲鈍的人也該反應過來了。

  只見這個蘇格蘭青年算著算著,筆尖驟然一頓。

  訝異的抬起頭,看向徐雲,臉色有些潮紅:

  “羅峰先生,這.這個公式不就說明”

  徐雲輕輕朝他點了點頭,暗歎一聲,說道:

  “沒錯,寫完它吧,某些東西也該到解除封印的時候了。”

  咕嚕——

  小麥乾乾的咽了口唾沫,視線飛快的從教室內掃過。

  法拉第、湯姆遜、韋伯、焦耳、斯托克斯.
  此時此刻。

  這些佔據了後世高中物理課本三分之一厚度的大佬們,盡數目光凝重的盯著小麥的筆尖。

  韋伯的嘴唇正在隱隱顫抖,法拉第的手中拽著一個小瓶,斯托克斯的拳頭悄然緊握.
  就連焦耳的那顆大光頭,折射出的反光似乎都亮了不少.
  他們在等待。

  等待見證一個數學上的奇跡。

  “呼”

  小麥腮幫子一鼓,深吸一口氣,在紙上做起了最後的演算。

  “μ0、ε0都是常數,那右邊自然就變成了對電場E求兩次偏導.”

  “再把負號整理一下,最後.”

  幾分鍾後。

  一個最終項的表達式出現在了羊皮紙上:

  ▽B=μ0ε0(B/t)。

  ▽E=μ0ε0(E/t)。

  前者是電場強度E的方程,後者是獨立的磁感應強度B的方程。

  隨著表達式的寫出,教室內頓時變得落針可聞。

  法拉第大大的喘著粗氣,又一次顫顫巍巍的拿出了硝酸甘油,舌下含服
  看著幾個激動的跟帕金森患者似的大佬,一旁的威廉·惠威爾不由與阿爾伯特親王對視一眼,問道:

  “那個.幾位教授,冒昧請教一下,這個表達式有什麽意義嗎?”

  斯托克斯這才想起來現場有幾個鮮為人來著,便轉過頭,對威廉·惠威爾解釋道:
  “惠威爾先生,您是哲學領域的權威,所以在自然科學的專業知識上可能存在一些.唔,壁壘。”

  說著他一指徐雲早先推導出的經典波動方程,繼續道:
  “首先我們知道,羅峰同學或者說肥魚先生,他推導出的這個經典波動方程,在數學上是絕對成立的。”

  “也就是符合這個數學公式的地方,就一定有波存在。”

  徐雲聞言眼觀鼻鼻觀口口觀心,沒有糾正斯托克斯的錯誤——畢竟這時候大家都還不知道量子概念來著。

  此時斯托克斯又說道:
  “接著羅峰同學引入了電場和磁場的概念,經過計算後表達式依舊成立,您想想這說明了什麽?”

  威廉·惠威爾微微一愣,有些理解斯托克斯的意思了:

  “也就是說,電磁和磁場中都有波?”

  一旁的法拉第這時候也喘勻了氣息,沉重的點了點頭,補充說道:

  “準確來說,應該是在數學上驗證了電場、磁場都以波動的形式在空間中傳播,場內存在一種從未被發現的波”

  “從未被發現”

  說道最後。

  法拉第的語氣近乎喃喃。

  到了現在,他現在算是聽懂徐雲所說的那句“封印解除”的意思了:

  自己研究了數十年的電磁場中,居然存在一種未知的波!
  如此重要的東西,自己此前居然一無所知.
  看著表情陰晴不定的法拉第,徐雲的心中也不由有些感慨。

  他在上高中的時候,曾經偶然讀過一篇文章。

  文章的名字叫做《法拉第的遺憾》。

  當然了。

  這篇文章倒不是發表在《讀者》或者《意林》上的雞湯。

  而是連載在徐雲讀書時常見的、一種叫做學習報上的小短文。

  那種報紙一學期大概五十多塊錢,其中版面的90%都是各類題目,不過邊角處有些時候會刊印一些文章。

  這種學習報和另一種叫《時事》的書籍,算是徐雲讀書那會兒為數不多可以接觸到社會面新聞的渠道。

  也不知道小二十年過去,這些東西還存不存在。

  總而言之。

  在《法拉第的遺憾》中。

  筆者稱法拉第因為沒有受過良好的教育,語文水平很低,他寫的論文晦澀難懂。

  所以他的一系列重大發現,在當時並沒有引起太大的震動。

  小麥則受過優秀的教育,所以歸納總結出了電磁波。

  文章巴拉巴拉了一大堆,最後寫了一句總結:

  【中、小學是學知識、打基礎的時期,應該學好各門功課。其中語文課是學好各門功課的基礎課、工具課,輕視不得,千萬不能重蹈法拉第的遺憾】。

  徐雲當時還沒啥想法,畢竟那時候他才高中,對法拉第的具體生平不了解。

  但等上了大學學習了物理史才發現,這tmd的不是扯淡麽?

  法拉第活著的時候都快被人供起來拜了,研究出的發電機能成為第二次工業革命的靈魂,怎麽可能會有人忽視他?

  反倒是小麥只在劍橋大學就讀期間高光過一陣,往後的人生一直過得不太如意。

  另外如果說起晦澀,麥克斯韋方程組也絕壁要比法拉第的磁感線難懂上無數倍好吧.
  更別說徐雲後來還看過法拉第論文的英文掃描版,內容哪怕以19世紀的認知來說都不難理解。

  不過另一方面。

  雖然法拉第自己可能至死都沒感覺,但以後世的上帝視角來看,電磁波無疑可以說是法拉第生平最大的憾事。

  因為以法拉第生平的研究積累,他應該是有能力可以推導出電磁波的。

  比如紐曼在1845年提出的紐曼矢量勢,加以磁場定律再求旋度,就能夠得到靜磁方程的近似。

  這離電磁波其實已經很近很近了。

  同時在法拉第留下的一些信件中,後人也可以發現一些對電磁波的猜測。

  例如1865年和韋伯的來信中,法拉第便寫過一句話:

  “.也許在通電的導體和導體之間,我們肉眼看不到的空間裡,有某種未知的力量在進行著傳遞與交互。”

  可惜法拉第的數學一直不好,因此最終通過推導預言了電磁波的人是小麥,並由赫茲為他做了證明。

  所以從徐雲的視角來看。

  法拉第沒有發現電磁波其實是有些遺憾,甚至不公平的。

  畢竟電磁波,是電磁學裡堪稱心臟的一個概念。

  這就好比一位一輩子研究藍鯨的海洋生物學家,對於藍鯨的遷徙路線、叫聲、生活習性都無比了解。

  但卻因為深潛技術不發達,導致他一輩子都未曾見過藍鯨的鯨落,鯊凋倒是遇到過不少。

  這顯然是一件憾事。

  所以雖然徐雲這次的任務目標是小麥,但在猶豫良久以後,他還是決定將電磁波身上的‘封印’給解除了。

  這也是之前提到的、他對小麥和赫茲感覺虧欠的根由。

  過了一會兒。

  法拉第等人心態逐漸恢復了正常,有空開始思索起了其他問題。

  只見他凝視了幾秒鍾小麥推導出的表達式,眉頭微微皺起,對徐雲道:

  “羅峰同學,雖然你在數學上驗證了電場和磁場中存在有波,但物理和數學還是有些不同的。”

  “一類物質如果只在數學上成立,那麽頂多只能稱之為預測。”

  “想要最終確定它存在,那麽必須要拿出肉眼可見的現等等!”

  後半句話沒說完,法拉第忽然意識到了什麽。

  只見他的目光死死地盯著徐雲,一張老帥臉上隱約浮現出了些許期待,問道:
  “羅峰同學,你之前說今天有兩件事要做,其中一是推導,二是實驗。”

  “莫非那個實驗,指的就是”

  徐雲輕輕朝他點了點頭,語氣緩慢而又肯定:

  “沒錯,我們接下來要做的就是”

  “抓住電磁場中的波!”

  (本章完)
鍵盤左右鍵 ← → 可以切換章節
章節問題回報:
翻譯有問題
章節內容不符
章節內容空白
章節內容殘缺
上下章節連動錯誤
小說很久沒更新了
章節顯示『本章節內容更新中』
其他訊息