還不登入嗎?
(-3-)是不是要下跪求你們?
趕快為了可愛的管理員登入喔。
登入可以得到收藏功能列表
還能夠讓我們知道你們有在支持狂人喔(*´∀`)~♥
《數學心》第349章 希爾伯特的講演
  在1900年8月巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的相信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。

  希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。

  (1)康托的連續統基數問題。1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科恩(P.Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。

  (2)算術公理系統的無矛盾性。歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。

  (5)拓撲學成為李群的條件(拓撲群)。這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格裡森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結果。

  (6)對數學起重要作用的物理學的公理化。1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。

  (7)某些數的超越性的證明。需證:如果α是代數數,β是無理數的代數數,那麽αβ一定是超越數或至少是無理數(例如,2√2和eπ)。蘇聯的蓋爾封特(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。

  (8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未最終解決,其最佳結果均屬中國數學家陳景潤。

  (9)一般互反律在任意數域中的證明。1921年由日本的高木貞治,1927年由德國的阿廷(E.Artin)各自給以基本解決。而類域理論至今還在發展之中。

  (10)能否通過有限步驟來判定不定方程是否存在有理整數解?求出一個整數系數方程的整數根,稱為丟番圖(約210-290,

古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯系。  (11)一般代數數域內的二次型論。德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A.Weil)取得了新進展。

  (12)類域的構成問題。即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。

  (13)一般七次代數方程以二變量連續函數之組合求解的不可能性。七次方程x7+ax3+bx2+cx+1=0的根依賴於3個參數a、b、c;x=x(a,b,c)。這一函數能否用兩變量函數表示出來?此問題已接近解決。1957年,蘇聯數學家阿諾爾德(Arnold)證明了任一在〔0,1〕上連續的實函數f(x1,x2,x3)可寫成形式∑hi(ξi(x1,x2),x3)(i=1--9),這裡hi和ξi為連續實函數。柯爾莫哥洛夫證明f(x1,x2,x3)可寫成形式∑hi(ξi1(x1)+ξi2(x2)+ξi3(x3))(i=1--7)這裡hi和ξi為連續實函數,ξij的選取可與f完全無關。1964年,維土斯金(Vituskin)推廣到連續可微情形,對解析函數情形則未解決。

  (14)某些完備函數系的有限的證明。即域K上的以x1,x2,…,xn為自變量的多項式fi(i=1,…,m),R為K〔X1,…,Xm]上的有理函數F(X1,…,Xm)構成的環,並且F(f1,…,fm)∈K[x1,…,xm]試問R是否可由有限個元素F1,…,FN的多項式生成?這個與代數不變量問題有關的問題,日本數學家永田雅宜於1959年用漂亮的反例給出了否定的解決。

  (15)建立代數幾何學的基礎。荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。注一舒伯特(Schubert)計數演算的嚴格基礎。一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關系。但嚴格的基礎至今仍未建立。

  (16)代數曲線和曲面的拓撲研究。此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備dx/dy=Y/X的極限環的最多個數N(n)和相對位置,其中X、Y是x、y的n次多項式。對n=2(即二次系統)的情況,1934年福羅獻爾得到N(2)≥1;1952年鮑廷得到N(2)≥3;1955年蘇聯的波德洛夫斯基宣布N(2)≤3,這個曾震動一時的結果,由於其中的若乾引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了(E2)不超過兩串。1957年,中國數學家秦元勳和蒲富金具體給出了n=2的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勳、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勳進一步證明了二次系統最多有4個極限環, 並且(!,3)分布,但證明有誤,至今二次系統的問題尚未解決。

  (17)半正定形式的平方和表示。實系數有理函數f(x1,…,xn)對任意數組(x1,…,xn)都恆大於或等於0,確定f是否都能寫成有理函數的平方和?1927年阿廷已肯定地解決。

  (18)用全等多面體構造空間。德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。

  (19)正則變分問題的解是否總是解析函數?德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。

  (20)研究一般邊值問題。此問題進展迅速,己成為一個很大的數學分支。日前還在繼讀發展。

  (21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。此問題屬線性常微分方程的大范圍理論。希爾伯特本人於1905年、勒爾(H.Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。

  (22)用自守函數將解析函數單值化。此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變量情形已解決而使問題的研究獲重要突破。其它方面尚未解決。

  (23)發展變分學方法的研究。這不是一個明確的數學問題。20世紀變分法有了很大發展。
鍵盤左右鍵 ← → 可以切換章節
章節問題回報:
翻譯有問題
章節內容不符
章節內容空白
章節內容殘缺
上下章節連動錯誤
小說很久沒更新了
章節顯示『本章節內容更新中』
其他訊息